Sensory neurons from Nf1 haploinsufficient mice exhibit increased excitability.

نویسندگان

  • Yue Wang
  • G D Nicol
  • D Wade Clapp
  • Cynthia M Hingtgen
چکیده

Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by tumor formation. People with NF1 also can experience more intense painful responses to stimuli, such as minor trauma, than normal. NF1 results from a heterozygous mutation of the NF1 gene, leading to decreased levels of neurofibromin, the protein product of the NF1 gene. Neurofibromin is a guanosine triphosphatase activating protein (GAP) for Ras and accelerates the conversion of active Ras-GTP to inactive Ras-GDP; therefore mutation of the NF1 gene frequently results in an increase in activity of the Ras transduction cascade. Using patch-clamp electrophysiological techniques, we examined the excitability of capsaicin-sensitive sensory neurons isolated from the dorsal root ganglia of adult mice with a heterozygous mutation of the Nf1 gene (Nf1+/-), analogous to the human mutation, in comparison to wildtype sensory neurons. Sensory neurons from adult Nf1+/- mice generated a more than twofold higher number of action potentials in response to a ramp of depolarizing current as wild-type neurons. Consistent with the greater number of action potentials, Nf1+/- neurons had lower firing thresholds, lower rheobase currents, and shorter firing latencies than wild-type neurons. Interestingly, nerve growth factor augmented the excitability of wild-type neurons in a concentration-related manner but did not further alter the excitability of the Nf1+/- sensory neurons. These data clearly suggest that GAPs, such as neurofibromin, can play a key role in the excitability of nociceptive sensory neurons. This increased excitability may explain the painful conditions experienced by people with NF1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurofibromatosis pain is in the membrane. Focus on "sensory neurons from Nf1 haploinsufficient mice exhibit increased excitability".

Neurofibromatosis type 1 (NF1) is a relatively common genetic disease that is associated with a variety of neurologic complications. In addition to irregularities such as the formation of neurofibromas and neurofibrosarcomas, NF1 patients also suffer increased incidence of chronic pain (Creange et al. 1999; Wolkenstein et al. 2001). In this issue of the Journal of Neurophysiology (p. 3670-3676)...

متن کامل

N-type calcium current, Cav2.2, is enhanced in small-diameter sensory neurons isolated from Nf1+/- mice.

Major aspects of neuronal function are regulated by Ca(2+) including neurotransmitter release, excitability, developmental plasticity, and gene expression. We reported previously that sensory neurons isolated from a mouse model with a heterozygous mutation of the Nf1 gene (Nf1+/-) exhibited both greater excitability and evoked release of neuropeptides compared to wildtype mice. Furthermore, aug...

متن کامل

Augmented sodium currents contribute to the enhanced excitability of small diameter capsaicin-sensitive sensory neurons isolated from Nf1+/⁻ mice.

Neurofibromin, the product of the Nf1 gene, is a guanosine triphosphatase activating protein (GAP) for p21ras (Ras) that accelerates conversion of active Ras-GTP to inactive Ras-GDP. Sensory neurons with reduced levels of neurofibromin likely have augmented Ras-GTP activity. We reported previously that sensory neurons isolated from a mouse model with a heterozygous mutation of the Nf1 gene (Nf1...

متن کامل

Neurofibromatosis: the role of guanosine triphosphatase activating proteins in sensory neuron function.

Neurofibromatosis type 1 (NF1) is a common autosomal dominant disease characterized by formation of multiple benign and malignant tumors. People with this disorder also experience chronic pain, which can be disabling. Neurofibromin, the protein product of the Nf1 gene, is a guanosine triphosphatase activating protein (GAP) for p21Ras (Ras). Loss of Nf1 results in an increase in activity of the ...

متن کامل

ALTERED CALCIUM CURRENTS AND AXONAL GROWTH IN Nf1 HAPLOINSUFFICIENT MICE.

Mutations of the neurofibromin gene (NF1) cause neurofibromatosis type 1 (NF1), a disease in which learning disabilities are common. Learning deficits also are observed in mice with a heterozygous mutation of Nf1 (Nf1(+/-)). Dysregulation of regulated neurotransmitter release has been observed in Nf1(+/-) mice. However, the role of presynaptic voltage-gated Ca(2+) channels mediating this releas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 94 6  شماره 

صفحات  -

تاریخ انتشار 2005